Project Title	Funding	Strategic Plan Objective	Institution	
Denritic Cell Function in Autism	\$26,920	Q2.S.A	MIND Institute	
Brain mitochondrial abnormalities in autism	\$0	Q2.S.A	New York State Institute for Basic Research in Developmental Disabilities	
MATERNAL BRAIN-REACTIVE ANTIBODIES AND AUTISM SPECTRUM DISORDER	\$190,577	Q2.S.A	Feinstein Institute for Medical Research	
Prostaglandins and cerebellum development	\$356,400	Q2.S.A	University of Maryland, Baltimore	
The role of brainstem NTS inflammation and oxidative stress in Autism	\$43,000	Q2.S.A	Wadsworth Center	
To study the relationship between low GAD2 levels and anti-GAD antibodies in autistic children	\$0	Q2.S.A	Hartwick College	
Mechanisms of mitochondrial dysfunction in autism	\$0	Q2.S.A	Georgia State University	
Neuroimmunologic investigations of autism spectrum disorders (ASD)	\$162,856	Q2.S.F	National Institutes of Health	
Altered placental tryptophan metabolism: A crucial molecular pathway for the fetal programming of neurodevelopmental disorders	\$0	Q2.S.A	University of Southern California	
Anti-Neuronal Autoantibodies in PANDAS and Autism Spectrum Disorders	\$100,000	Q2.S.A	University of Oklahoma Health Sciences Center	
Neuroprotective effects of oxytocin receptor signaling in he enteric nervous system	\$0	Q2.Other	Columbia University	
Convergence of immune and genetic signaling pathways n autism and schizophrenia	\$29,430	Q2.S.A	University of California, Davis	
Mechanisms of synaptic alterations in a neuroinflammation model of autism	\$0	Q2.S.A	University of Nebraska Medical Center	
IL-1beta and IL1RAPL1: Gene-environment interactions regulating synapse density and function in ASD	\$28,600	Q2.S.A	University of California, Davis	
Sensitive periods in cerebellar development	\$32,941	Q2.S.A	University of Maryland, Baltimore	
3 Tesla 31Phosphorus magnetic resonance spectroscopy in disorder with abnormal bioenergetics	\$0	Q2.Other	Massachusetts General Hospital	
Autism spectrum disorders –inflammatory subtype: Molecular characterization	\$0	Q2.S.A	University of Medicine & Dentistry of New Jersey	
ASD - Inflammatory Subtype: Molecular Mechanisms	\$20,148	Q2.S.A	Rutgers University	
Roles of pro-inflammatory Th17 cells in autism	\$124,989	Q2.S.A	New York University	
GABRB3 and prenatal immune events leading to autism	\$62,500	Q2.S.A	Stanford University	
GABRB3 and placental vulnerability in ASD	\$523,820	Q2.S.A	Stanford University	
The mechanism of the maternal infection risk factor for autism	\$150,000	Q2.S.A	California Institute of Technology	
Hyperthermia and the amelioration of autism symptoms	\$66,153	Q2.S.A	Montefiore Medical Center	
Exploring metabolic dysfunction in the brains of people with autism	\$0	Q2.S.A	George Washington University	
Role of microglia and complement at developing synapses in ASD	\$122,500	Q2.S.A	Boston Children's Hospital	

Project Title	Funding	Strategic Plan Objective	Institution	
Autoimmunity against novel antigens in neuropsychiatric dysfunction	\$307,200	Q2.S.A	University of Pennsylvania	
Mitochondrial dysfunction due to aberrant mTOR- regulated mitophagy in autism	\$183,568	Q2.S.A	Columbia University	
Project 3: Immune environment interaction and neurodevelopment	\$109,725	Q2.S.A	University of California, Davis	
Fever, meningeal immunity and immune factors in autism	\$59,500	Q2.S.A	University of Virginia	
Bone marrow transplantation and the role of microglia in autism	\$109,651	Q2.S.A	University of Virginia	
Folate receptor autoimmunity in Autism Spectrum Disorders	\$149,755	Q2.S.A	State University of New York, Downstate Medical Center	